
ORIGINAL ARTICLE

Conditioning on Intermediates in Perinatal Epidemiology
Tyler J. VanderWeele,a Sunni L. Mumford,b and Enrique F. Schistermanb

Abstract: It is common practice in perinatal epidemiology to
calculate gestational-age-specific or birth-weight-specific associa-
tions between an exposure and a perinatal outcome. Gestational age
or birth weight, for example, might lie on a pathway from the
exposure to the outcome. This practice of conditioning on a potential
intermediate has come under critique for various reasons. First, if
one is interested in assessing the overall effect of an exposure on an
outcome, it is not necessary to stratify, and indeed, it is important not
to stratify, on an intermediate. Second, if one does condition on an
intermediate, to try to obtain what might conceived of as a “direct
effect” of the exposure on the outcome, then various biases and
paradoxical results can arise. It is now well documented theoreti-
cally and empirically that, when there is an unmeasured common
cause of the intermediate and the outcome, associations adjusted for
the intermediate are subject to bias. In this paper, we propose 3
approaches to facilitate valid inference when effects conditional on
an intermediate are in view. These 3 approaches correspond to (i)
conditioning on the predicted risk of the intermediate, (ii) condi-
tioning on the intermediate itself in conjunction with sensitivity
analysis, and (iii) conditioning on the subgroup of individuals for
whom the intermediate would occur irrespective of the exposure
received. The second and third approaches both require sensitivity
analysis, and they result in a range of estimates. Each of the 3
approaches can be used to resolve the “birth-weight paradox” that
exposures such as maternal smoking seem to have a protective effect
among low-birth-weight infants. The various methodologic ap-
proaches described in this paper are applicable to a number of
similar settings in perinatal epidemiology.

(Epidemiology 2012;23: 1–9)

Conditioning on an intermediate is of concern in all areas of
epidemiologic research.1–3 In particular, there is tension in

the perinatal epidemiology literature between the desire to obtain
gestational-age-specific or birth-weight-specific associations4–6

and the increasing awareness that conditioning on such variables
can give rise to severe biases.7–10 The difficulty arises because
gestational age and birth weight may be on a pathway from the
exposure of interest to the perinatal outcome or may be descen-
dents of such a variable. For example, if the exposure were
smoking and the outcome were infant mortality, smoking may in
part affect infant mortality through its effects on fetal growth or
the timing of delivery. When one conditions on such an inter-
mediate, without also controlling for the common causes of the
intermediate and the outcome, biased results and paradoxical
findings can emerge.1–3,11

It has, for example, long been documented12–14 that
among infants with the lowest birth weight, maternal smok-
ing seems to have a protective effect on infant mortality. This
seemingly perplexing association is often referred to as the
“birth-weight paradox.” The apparent protective effect of
maternal smoking is an artifact of conditioning on an inter-
mediate without adequate control for intermediate-outcome
confounding.7 In the case of the birth-weight paradox, birth
defects may be a common cause of both birth weight and
infant mortality (Fig.). Birth defects are not controlled for in
the analysis. For mothers who do smoke and have low-birth-
weight infants, low birth weight might be a consequence of
either smoking or of a birth defect. For mothers who do not
smoke and have low-birth-weight infants, low birth weight
cannot be a consequence of smoking and so some other cause
must be operating.7 A comparison of smoking and nonsmok-
ing mothers, without controlling for birth defects, will artifi-
cially bias the comparison because for this group of low-
birth-weight infants, not smoking and low birth weight
together is more likely indicative of the presence of a birth
defect. This form of bias is sometimes referred to as collider-
stratification bias and is described in more detail else-
where.15–18 Similar issues arise, sometimes in less severe
form, throughout perinatal epidemiology.19 The intermediate
variable need not have an effect on the outcome for such
biases to arise; all that is necessary is for the exposure to
affect the intermediate and for there to be an unmeasured
common cause of the intermediate and the outcome.

A considerable literature has developed pointing out
this problem of conditioning on an intermediate. However,
little of that literature8,9,20 has offered solutions other than

Submitted 29 September 2011; accepted 30 September 2011.
From the aDepartments of Epidemiology and Biostatistics, Harvard School

of Public Health, Boston, MA; and bEpidemiology Branch, Eunice
Kennedy Shriver National Institute of Child Health and Human Devel-
opment, National Institutes of Health, Bethesda, MD.

Supported by National Institutes of Health grant HD060696 (to T.J.V.) and
Intramural Research Program of the Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of
Health (to S.L.M. and E.F.S.). The authors reported no other financial
interests related to this research.

Editors’ note: Related articles appear on pages 10 and 13.
Correspondence: Tyler J. VanderWeele, Departments of Epidemiology and

Biostatistics, Harvard School of Public Health, 677 Huntington Ave,
Boston, MA 02115. E-mail: tvanderw@hsph.harvard.edu.

Copyright © 2011 by Lippincott Williams & Wilkins
ISSN: 1044-3983/12/2301-0001
DOI: 10.1097/EDE.0b013e31823aca5d

Epidemiology • Volume 23, Number 1, January 2012 www.epidem.com | 1

tvanderw@hsph.harvard.edu
http://www.epidem.com


abandoning conditioning on the intermediate altogether. Sim-
ply not conditioning on the intermediate will often be the
correct way to proceed with analysis. If the overall effect of
the exposure on the outcome is of interest, then there is no
reason to condition on an intermediate. Conditioning on an
intermediate in general will be of interest only when other
types of effect, such as the direct effect of the exposure on the
outcome (not through the intermediate) are in view. We will
return at the end of the paper to these questions of whether
and when to condition on an intermediate. However, it is
important to emphasize that this choice should be determined
by first clarifying the effect of interest.

In this paper, we discuss 3 analytic approaches to help
draw inferences when the effect of interest is such that it may
be obtained by conditioning on an intermediate. The 3 ap-
proaches include conditioning on the predicted risk of the
intermediate, conditioning on the intermediate itself with
sensitivity analysis, and conditioning on the principal stra-
tum. Each approach carries with it a different interpretation,
a different set of assumptions, and, when relevant, different
methods for sensitivity analysis. When sensitivity analysis
techniques are used, often a range of estimates, rather than a
single estimate, will be obtained. As will be observed later,
the 3 approaches estimate different causal effects, and the
resulting estimates would not be expected to all be the same.
We illustrate each by application to data exemplifying the
birth-weight paradox; with the application of each of the 3
approaches we describe, the birth-weight paradox will be
seen to dissolve. The approaches are applicable to a variety of
similar settings in perinatal epidemiology.

Notation and Definitions
We use notions of counterfactuals (or “potential out-

comes”) through parts of this paper.21,22 We will let A denote
our exposure of interest (eg, smoking), M will be the inter-
mediate (eg, low birth weight, defined as less than 2500 g),
and Y will be outcome (eg, infant mortality). We will let C
denote some set of baseline characteristics measured prior to
or concurrent with the exposure. The relationships among the
variables are depicted in the Figure. The approaches we

describe later will be applicable irrespective of whether the
intermediate has an actual effect on the outcome.

We will let Ya denote the counterfactual outcome for
each individual if the exposure had been set to level a and let
Ma denote intermediate if the exposure had been set to level
a. Thus, if A were binary, for each individual we would have
2 possible counterfactual outcomes Y1 and Y0, corresponding
to what would have happened to the individual (eg, with or
without smoking); and likewise we will have 2 possible
counterfactual intermediates M1 and M0. For each individual,
we will be able to observe only one of Y1 or Y0, corresponding
to the exposure that was in fact received; and likewise for M1

and M0. We will say that the effect of A on Y is unconfounded
conditional on C if the groups with A � 1 and A � 0 are
comparable in their distribution of potential outcomes (Y0, Y1)
conditional on C. Likewise, we will say that the effect of A on
M is unconfounded conditional on C if the groups with A �
1 and A � 0 are comparable in their distribution of potential
outcomes (M0, M1) conditional on C.

NCHS Data Illustrating the Birth Weight Paradox
We use cohort-linked birth certificate and infant mor-

tality files for year 1997 from the National Center for Health
Statistics (NCHS). These are complete files for all US births
in year 1997 with 1-year follow-up for infant mortality. Only
singletons were included in the analysis. Demographic char-
acteristics for this sample are given in Table 1. Smoking
status was dichotomized (any smoking during pregnancy vs.
none). Low birth weight was defined as birth weight less than
2500 g. Covariates include sex (boy/girl), maternal race
(black, white, other), maternal education (less than high
school, high school, more than high school), maternal age
(�15, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–54),
nulliparous (yes/no), marital status (married/single), and prior
preterm birth (yes/no). Table 2 gives infant mortality statis-
tics stratified by smoking and low-birth-weight status. The
crude odds ratio (OR) relating infant mortality and smoking
is 1.69 (95% confidence interval �CI�: 1.63 to 1.75). The odds
ratio relating infant mortality and smoking adjusted for the
covariates C using logistic regression (omitting birth weight)

FIGURE. Diagram illustrating relation-
ships between an exposure, eg, smok-
ing (A); an intermediate, eg, low birth
weight (M); an outcome, eg, infant
mortality (Y); and both measured (C)
and unmeasured (U) confounders.
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is 1.53 (1.47 to 1.59), which would be the more appropriate
analysis for assessing the overall effect of smoking on infant
mortality.

Finally, we use a logistic regression model of infant
mortality Y on smoking A, low birth weight M, an A � M
interaction, and covariates C:

TABLE 1. Baseline Characteristics of Women With Singleton Pregnancies in the 1997 Cohort-linked Birth Certificate Infant
Mortality Files From the National Center for Health Statistics, by Birth Weight and Smoking Status

Overall
(n � 3,773,369)

No. (%)

Birth Weighta

Smoking Statusb

(n � 397,780)
No. (%)

Nonsmoker
(n � 2,606,836)

No. (%)

<2500 g
(n � 229,863)

No. (%)

>2500 g
(n � 3,541,919)

No. (%)

Infant mortality

Live birth 3,749,676 (99) 215,667 (94) 3,532,669 (100) 393,830 (99) 2,591,452 (99)

Infant death 23,693 (1) 14,196 (6) 9250 (0.3) 3950 (1) 15,384 (1)

Maternal age (years)

�15 10,011 (0.3) 1285 (1) 8724 (0.2) 665 (0.2) 7607 (0.3)

15–19 476,087 (13) 41,113 (18) 434,766 (12) 68,699 (17) 320,588 (12)

20–24 923,143 (25) 58,558 (26) 864,201 (24) 123,929 (31) 620,988 (24)

25–29 1,040,805 (28) 54,121 (24) 986,280 (28) 97,861 (25) 733,045 (28)

30–34 855,150 (23) 44,099 (19) 810,734 (23) 67,067 (17) 604,523 (23)

35–39 392,308 (10) 24,634 (11) 367,456 (10) 33,695 (9) 268,936 (10)

40–44 72,960 (2) 5784 (3) 67,124 (2) 5698 (1) 49,213 (2)

45–54 2824 (0.1) 261 (0.1) 2561 (0.1) 163 (0.04) 1881 (0.1)

Missing 0 (0) 8 (0.003) 73 (0.002) 3 (0.001) 55 (0.002)

Maternal race

White 2,987,619 (79.2) 151,198 (66) 2,835,430 (80) 337,702 (85) 2,014,565 (77)

Black 581,504 (15.4) 66,241 (29) 514,951 (15) 50,280 (13) 467,211 (18)

Other 204,246 (5.4) 12424 (5) 191,538 (5) 9798 (3) 125,060 (5)

Maternal education

� High school 829,668 (22) 65,811 (29) 763,588 (22) 140,321 (35) 483,145 (19)

High school 1,225,534 (33) 80,130 (35) 1,144,962 (32) 170,306 (43) 824,000 (32)

� High school 1,663,457 (45) 78,703 (34) 1,584,384 (45) 82,006 (21) 1,264,335 (49)

Missing 0 (0) 5219 (2) 48,985 (1) 5147 (1) 35,356 (1)

Married 1,229,086 (33) 108,636 (47) 1,119,828 (32) 209,813 (53) 772,515 (30)

Nulliparous 1,261,874 (33) 87,202 (38) 1,174,241 (33) 102,694 (26) 902,769 (35)

Missing 28,167 (1) 2331 (1) 25,237 (1) 2641 (1) 18,958 (1)

Prior preterm birth 44,177 (1) 9684 (4) 34,474 (1) 8861 (2) 25,506 (1)

Missing 3355 (2) 41,639 (1) 3854 (1) 21,501 (1)

Infant male sex 1,931,390 (51) 109,263 (48) 1,821,269 (51.4) 203,461 (51.2) 1,335,443 (51.2)

aMissing information on birth weight for 1587 women.
bMissing information on smoking status for 768,753 women.

TABLE 2. Infant Mortality (No. Deaths per 1000 Live Births) Among Women With Singleton Pregnancies in the 1997 Cohort-
linked Birth Certificate Infant Mortality Files From the National Center for Health Statistics, by Birth Weight and Smoking Status

Birth Weight
>2500 ga

Birth Weight
<2500 gb Overallc

TotalSmoker Nonsmoker Smoker Nonsmoker Smoker Nonsmoker

Infant mortality

Live birth 353,335 2,453,633 40,383 137,154 393,830 2,591,452 3,749,676

Infant death 1729 5838 2192 9387 3950 15,384 23,693

Deaths per 1000 4.9 2.4 51.5 64.1 2.4 5.9 6.3

aMissing information on 40,747 women.
bMissing information on 727,384 women.
cMissing information on 768,753 women.
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log it (P(Y � 1�a, m, c))

� �0 � �1a � �2m � �3am � �4
� c. (1)

We can then calculate the odds ratio comparing smok-
ing versus nonsmoking for both low-birth-weight infants
(OR � e�1) and normal-birth-weight infants (OR � e�1��3).
Using the NCHS data for infants weighing more than 2500 g,
we obtain an adjusted odds ratio of 1.87 (1.76 to 1.97). For
low-birth-weight infants, we obtain an adjusted odds ratio of
0.76 (0.72 to 0.80). One might interpret these finding as
evidence for an interaction between birth weight and smok-
ing.6 In any case, we see that smoking seems to have a
protective effect for low-birth-weight infants.

Approach 1. Conditioning on the Risk of an
Intermediate

As noted earlier, when we calculate effect measures
conditional on intermediate variables, biases can result. How-
ever, such problems do not in general arise in a similar
manner when conditioning on baseline covariates. More spe-
cifically, if the effect of A on Y is unconfounded conditional
on baseline covariates C, then we can validly estimate the
causal effect of A on Y conditional on C � c simply by
calculating our effect measures within strata of C.

The variables C themselves might be predictive of the
intermediate M. Our first approach to “conditioning on
an intermediate” will consist of conditioning on the “risk of
the intermediate” predicted by the baseline covariates, rather
than conditioning on the intermediate itself. Although this
will not allow us to get birth-weight-specific associations, it
will at least allow us to assess whether smoking is protective
among the group of infants who are most at-risk for being of
low birth weight.

More specifically let P(M � 1�C � c) denote the
probability of low birth weight conditional on covariates C �
c. Predicted probabilities for each individual could be ob-
tained by a logistic regression of low birth weight M on the
covariates C:

log it (P	M � 1�c
) � �0 � �1
� c.

Once we have estimated the parameters (�0, �1
� ) from

the logistic regression, we can calculate predicted probabili-
ties of low birth weight based on each woman’s covariate
values c. Note that this predicted probability is a function
only of the woman’s baseline covariates c, and we can thus
condition on it in the analysis of infant mortality because we
are only conditioning on a function of the baseline covariates;
we are not in fact conditioning on the intermediate. We now
define a new high-risk-of-low-birth-weight variable H. We
will let H � 1 for mothers who have predicted probabilities
of having low-birth-weight infants above the 95th percentile,
and we let H � 0 otherwise. Note that our high-risk variable
H is again simply a function of the covariate values c. To

examine the association between smoking and infant mortal-
ity among infants who are or are not high risk for low birth
weight, we could fit a logistic regression model of infant
mortality Y on smoking A, high-risk-status H, an A � H
interaction, and covariates C:

log it (P(Y � 1�a, h, c))

� �0 � �1a � �2h � �3ah � �4
� c. (2)

We can then calculate the odds ratio comparing smok-
ing versus nonsmoking for low-risk infants (OR � e�1) and
high-risk infants (OR � e�1��3). Because our risk-of-low-
birth-weight variable H is essentially a function just of the
baseline covariates C, we no longer run into the same prob-
lems of conditioning on an intermediate (eg, collider-strati-
fication bias). However, the interpretation of the estimate is
now different. The estimate captures the overall effect of
smoking on infant mortality (including that through the in-
termediate) for those at high risk of the intermediate. This
estimate from approach 1 thus does not capture the effect of
the exposure that is not through the intermediate (the “direct
effect”); that will be the focus of approach 2 below. Approach
1 does not give conclusions about direct effects. To determine
birth weight risk categories, we apply this approach to the
NCHS data using the sex, maternal race, maternal education,
maternal age, nulliparity, marital status, and prior preterm
birth. For low-risk infants (H � 0), we obtain an adjusted
odds ratio of 1.55 (95% CI � 1.49 to 1.62). For high-risk
infants, we obtain an adjusted odds ratio of 1.30 (1.16 to
1.46). These are the effects of smoking for those with lower
versus higher predicted probabilities of low birth weight,
respectively. The odds ratio for smoking is lower for high-
risk infants than for low-risk infants (1.30 vs. 1.55), which is
perhaps not particularly surprising as high-risk infants will
generally have higher baseline risk without smoking. How-
ever, even for high-risk infants, it is not the case that smoking
has an apparent protective effect on infant mortality; it has a
harmful effect with an odds ratio for mortality of 1.30. By not
conditioning on the intermediate (but rather on a set of
baseline covariates that predict low birth weight), we have
avoided the problems associated with conditioning on an
intermediate and have circumvented the birth-weight para-
dox. Similar analyses could be done with other percentile
cutoffs to define “high-risk.” A limitation of this approach is
that a larger set of baseline covariates with better predictive
power of the intermediate could change the estimates ob-
tained; the “low-risk” and “high-risk” designations are rela-
tive to the covariates being used. In some cases, high-risk
may not be a reasonable label if, for example, even those
above the 95th percentile still have relatively low predicted
probability of the intermediate.
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Approach 2. Conditioning on an Intermediate
With Sensitivity Analysis

Consider again the logistic regression in equation (1) in
which we condition on the intermediate itself, M, (eg, gesta-
tional age or low birth weight). Our odds ratios will be biased
because of unmeasured confounding of the intermediate-
outcome relationship (eg, by birth defects or malnutrition).
One approach to address these biases is the use of sensitivity
analysis to assess how such an unmeasured common cause U
of the intermediate and the outcome might affect our odds
ratio estimates. Specifically, suppose U is a binary variable
indicating the presence of a common cause of the intermedi-
ate, say low birth weight and the outcome, infant mortality.
Let � denote the odds of infant mortality Y comparing U � 1
and U � 0 conditional on smoking exposure A, low-birth-
weight status M, and the covariates C, and let �am denote the
prevalence of U among those with smoking status a (a � 1 or
a � 0) and low-birth-weight status m (m � 1 or m � 0). We
have shown elsewhere3 that if the outcome is rare, so that
odds ratios approximate risk ratios, and if U increases the risk
of infant mortality Y by the same factor for low-birth-weight
and normal-birth-weight infants, then the ratio between the
estimate not controlling for U and the estimate that would
have been obtained after controlling for U is given by the
following:

B �
1 � 	� � 1
�1m

1 � 	� � 1
�0m

. (3)

The corrected odds ratio (that would have been ob-
tained when adjusting for U) can then be calculated by
dividing the estimated odds ratio by the bias factor B. Note
that this ratio may differ for low-birth-weight infants (m � 1)
and normal-birth-weight infants (m � 0) because the preva-
lences of U, �1m, and �0m, may differ for normal and
low-birth-weight infants. One could alternatively explore
potential unmeasured confounding through simulations.9,20

Suppose we were to apply this approach to the NCHS
data. For low-birth-weight infants, we had obtained a (poten-
tially biased) odds ratio of 0.76 (95% CI � 0.72 to 0.80).
Suppose now that for low-birth-weight infants the prevalence
of U for smoking mothers is �1m � 0.025 but that the
prevalence of U for nonsmoking mothers is �0m � 0.14
(because if smoking were not the cause of low birth weight,
this renders some other explanation/cause more likely). If the
effect of U on infant mortality were a 3.5-fold increase (� �
3.5), we would have a bias factor in equation (3) of 0.79
(1.06/1.35 � 0.72) and thus a corrected odds ratio of 0.76/
0.79 � 0.96 (0.91 to 1.01). If the effect of U were instead a
5-fold increase (� � 5), we would have a bias factor of 0.59
(1.3/2.2 � 0.59) and a corrected odds ratio of 0.76/0.59 �
1.29 (95% CI: 1.22 to 1.36).

We have selected our sensitivity in part based on
estimates for birth defects obtained from the literature or
transformations of estimates in the literature.23–25 Based on
estimates for the fraction of infant mortality due to birth
defects, the sensitivity analysis parameter � may be even
higher.23 However, in general, sensitivity analysis techniques
can be helpful even in the absence of such knowledge. One
can assess how large the effects would have to be to explain
away the result, and readers can then decide whether they
think such values are or are not plausible. One can also
specify several different sets of sensitivity analysis parame-
ters and obtain a range of different estimates. No specific set
of parameters needs to be believed for such a sensitivity
analysis to be informative. In some cases, only a little
confounding may be necessary to explain away the effect; in
others, quite a lot. These techniques can also in principle be
used with multiple unmeasured confounding variables.3 Here,
we have considered birth defects, but malnutrition may also
be a common cause. Analyses that considered jointly the
consequences of birth defects and malnutrition would even
more easily be able to explain away the observed association.
It should also be noted that the sensitivity analysis used here
assumed that the unmeasured confounder U increased the risk
of infant mortality Y by the same factor for low-birth-weight
and normal-birth-weight infants; this assumption can also be
relaxed.3 However, if a sensitivity analysis under this simpli-
fying assumption explains away the association, then sensi-
tivity analysis dropping this assumption would still explain
away the effect estimate. This is because the sensitivity
parameter values that explained away the estimate under the
simplified technique would still be within the space of sen-
sitivity parameter values under the more general technique.

Similar analyses could be used to adjust the odds ratio
for normal-birth-weight infants. However, we see here that by
using the bias formula to attempt to correct for possible
unmeasured confounding of the birth-weight-mortality rela-
tionship, our corrected odds ratios for smoking among low-
birth-weight infants rise above 1 for plausible values of the
sensitivity analysis parameters. The birth-weight paradox
vanishes: maternal smoking no longer seems to have a pro-
tective effect among low-birth-weight infants. Thus, although
estimates conditioning on an intermediate may be biased due
to unmeasured confounding of the intermediate-outcome re-
lationship, sensitivity analysis in conjunction with these bi-
ased estimates can allow for reasoning about the estimates
that would have been obtained had it been possible to control
for such unmeasured confounders.

We note that in this and similar examples, if it were the
case that the measured covariates C and the unmeasured
confounder U together sufficed to control for confounding of
the joint effects of smoking and low birth weight on infant
mortality, then the corrected odds ratios could be interpreted
as controlled direct effects.1,3,26 In the causal inference liter-
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ature, controlled direct effects are usually conceived of as the
effect of the exposure under interventions to fix the interme-
diate.1,26 In some settings, direct interventions to fix the
intermediate (eg, gestational age or birth weight) to a partic-
ular value may be implausible, and the analysis is perhaps
best conceived of as one of adjusted association. To avoid
confounded associations conditional on the intermediate, one
controls for measured confounding by analytic adjustment
and unmeasured confounding by sensitivity analysis. Vander-
Weele and Hernández-Diaz27 apply a similar approach to that
described here in the context of preeclampsia as the exposure,
preterm birth as the intermediate, and cerebral palsy as the
outcome, to examine whether there is a direct effect of
preeclampsia on cerebral palsy not through preterm birth.

Approach 3. Conditioning on Principal Stratum
Thus far we have considered conditioning on the risk of

the intermediate being present, and on the intermediate itself.
Our third approach involves assessing the effect of the expo-
sure on the outcome among the subpopulation for whom the
intermediate would be present irrespective of exposure status.
For example, we might be interested in the effect among the
subpopulation that would be low birth weight irrespective of
maternal smoking. This subgroup for whom the intermediate
will occur irrespective of the exposure is sometimes referred
to as a “principal stratum.”28 More generally, a principal
stratum is a subgroup defined by the joint potential outcomes
(M0, M1). If the exposure A and the intermediate M are
binary, then there are 4 principal strata: those for whom the
intermediate will not occur irrespective of exposure status
(M0 � 0, M1 � 0, “never low birth weight”), those for whom
the intermediate will occur with exposure but not without
(M0 � 0, M1 � 1, “low birth weight only with smoking”),
those for whom the intermediate will occur without the
exposure but not with (M0 � 1, M1 � 0, “low birth weight
only if nonsmoking”/“defiers”), and those for whom the
intermediate will occur irrespective of exposure status (M0 �
1, M1 � 1, “always low birth weight”). If we are interested in
whether smoking has a protective effect among low-birth-
weight infants, one potentially relevant question to ask within
this context of principal stratification is whether smoking has
a protective effect among the subpopulation who would be
low birth weight irrespective of exposure status (M0 � 1,
M1 � 1). In counterfactual notation this effect is given by the
following:

PSDE � E�Y1 � Y0�M0 � 1, M1 � 1�.

This is sometimes referred to as a “principal-stratum
direct effect.”29,30

The advantage of this approach using principal strati-
fication is that, like the first approach, we essentially avoid
the problem of conditioning on the intermediate directly.
Instead we condition on the principal stratum, which is

essentially an underlying characteristic of the individual. It is
like conditioning on a baseline covariate.

The disadvantage of this approach is that we do not
know who is in each principal stratum. For example, we do
not know which infants will be low birth weight irrespective
of maternal smoking. Because we cannot identify the indi-
viduals who fall in each principal stratum, we cannot estimate
the principal strata direct effect above directly from the data.
However, one can attempt to assess the magnitude of this
effect by using sensitivity analysis techniques for principal
strata.3,30–32 Specifically, it has been shown32 that if one
calculates the crude outcome difference between the exposed
(A � 1) and the unexposed (A � 0) among those for whom
the intermediate is in fact present (M � 1):

E�Y�A � 1, M � 1� � E�Y�A � 0, M � 1�

then the principal stratum direct effect can be expressed as the
difference between the crude outcome difference and a sen-
sitivity analysis parameter, under an assumption that there are
no individuals for whom the intermediate would occur if
unexposed, but not if exposed (ie, no defiers). In the context
of the smoking-birth weight example, this would imply that
there are no infants who would be normal birth weight if their
mother smoked but who would be low birth weight if their
mother did not smoke. If this is the case, then it can be shown
that32:

PSDE � E�Y�A � 1, M � 1� � E�Y�A � 0, M � 1� � 	,

where the sensitivity analysis parameter 	 is given by the
following:

	 � E�Y1�A � 1, M � 1� � E�Y1�A � 0, M � 1�.

The interpretation of this sensitivity analysis parameter
	 is the difference in infant mortality rates under maternal
smoking for 2 populations, the population for whom the
infant would be low birth weight if the mother smoked and
the population for whom the infant would be low birth weight
if the mother did not smoke. Because this second population
consists of those who would be low birth weight even if the
mother did not smoke, it is probably a less healthy population
that is likely to have a higher infant mortality rate if the
mother smokes. The parameter 	 will thus likely be negative.
The parameter is not identified from the data; rather, an
investigator can specify different plausible values of this
parameter to assess the principal-stratum direct effect. One
will again obtain a range of estimates corresponding to the
different sensitivity analysis specifications. Further detail on
inference for principal-stratum direct effects can be found
elsewhere.3,30–34

We now apply this principal-stratification approach to
the NCHS data. If we first calculate the crude infant mortality
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difference between the smoking and nonsmoking mothers
among infants of low birth weight, we obtain 0.051 � 0.064 �
�0.013 (95% CI � �0.015 to �0.011) and once again with
the crude analysis, it seems that smoking has a protective
effect on infant mortality for low-birth-weight infants. If we
want to calculate the principal-stratum direct effect (ie, the
effect of smoking on infant mortality among the subpopula-
tion who would have been low birth weight irrespective of
smoking exposure), then we need to adjust this crude estimate
by the sensitivity parameter 	. If we thought that the differ-
ence in infant mortality rates under smoking when comparing
the population for whom the infant would have been low birth
weight if the mother smoked and the population for whom the
infant would have been low birth weight even if the mother
did not smoke were �0.02 we would then obtain an estimate
of the principal-stratum direct effect of 0.007 (0.005 to
0.009); if we thought that this difference were �0.03 we
would obtain an estimate of the principal-stratum direct effect
of 0.017 (0.015 to 0.019). These estimates of the principal
stratum direct effect would suggest that smoking has a harm-
ful effect on the subpopulation who would be low birth
weight irrespective of smoking exposure. The principal-stra-
tum direct effect is positive; the birth-weight paradox is again
resolved. A disadvantage of this approach is that, even if we
use sensitivity analysis to assess the principal stratum direct
effect, we still do not know which individuals are in this
principal stratum (ie, we do not know which infants would be
low birth weight irrespective of maternal smoking).

DISCUSSION
We have described 3 approaches related to calculating

effects of an exposure, conditional on some intermediate
variable or a variant of it. Each of the approaches has a unique
interpretation, requires different assumptions, and has its own
strengths and weaknesses. In the first approach, we condi-
tioned on the risk of the intermediate as predicted by baseline
covariates, rather than on the intermediate itself. By condi-
tioning on the risk predicted by baseline covariates, one could
still evaluate the effect of an exposure (eg, smoking) for
high-risk subgroups, while avoiding the biases ordinarily
associated with conditioning on an intermediate. The disad-
vantage of this first approach is that the effect one obtains is
not specific to individuals for whom the intermediate (eg, low
birth weight or gestational age) actually occurs, but for those
at high risk of occurrence. If the intermediate is relatively
rare, this may not be an accurate reflection of the effect of the
exposure for those for whom the intermediate will in fact
develop. Moreover, the effect that is captured is the overall
effect of the exposure (including that through the intermedi-
ate) for those who are at high risk of the intermediate; this
may not be what is of substantive interest.

In the second approach, we conditioned on the inter-
mediate itself. The disadvantage of this approach is that it

will induce bias whenever there is an unmeasured common
cause of the intermediate and the outcome; one must then
attempt to correct for the bias through sensitivity analysis.
The advantage of this approach is that, after correction
through sensitivity analysis, one obtains a range of estimates
(according to the range of sensitivity analysis parameters
specified) of the effect of the exposure on the outcome for
individuals with the intermediate, corresponding to the direct
effect of the exposure on the outcome not through the
intermediate. Obtaining this direct effect is arguably what is
often the goal when researchers condition on an intermediate
in perinatal epidemiology.

In the third approach, one conditions on the subpopu-
lation for whom the intermediate would occur irrespective of
exposure. This approach has the advantage that this is a
particularly high-risk group and it is a group for whom the
intermediate will necessarily occur. The disadvantage of the
third approach, like the second, is that naive estimators of this
effect are biased and correction needs to be made through
sensitivity analysis; one again will obtain a range of esti-
mates. A further disadvantage with this third approach is that,
even after applying the methodology, we still do not know
who is in the subpopulation such that the intermediate will
occur irrespective of the exposure. We believe that the second
approach presented here will in general be the one of greatest
interest. In essence, it captures the direct effect of the expo-
sure on the outcome not through the intermediate, which we
believe is the effect that is often desired when investigators
condition on an intermediate.

In many studies, the overall effect of the exposure on
the outcome may be of central interest and none of the
approaches described here is then needed. The approaches
here are of relevance only when the investigator is interested
in the direct effect of the exposure not through the interme-
diate or in the effect of the exposure for certain groups at high
risk for, or certain of having, the intermediate. In these cases,
it may be desirable to employ all 3 approaches to develop a
fuller understanding of the relationships among the exposure,
intermediate, and the outcome. In some settings, the 3 effects
may all be in a consistent direction. However, it is important
to note that the 3 approaches need not all give effect estimates
in the same direction. Having effect estimates in different
directions for the 3 approaches is not necessarily an indica-
tion that one or more of the estimates is in the wrong
direction. The 3 approaches estimate 3 different effects (ef-
fects for 3 different populations) and these may in fact be in
different directions. Moreover, the effects under approaches 1
and 3 are overall effects (including the effect through the
intermediate) for their respective subpopulations, whereas
approach 2 is a direct effect, the effect not through the
intermediate. In our analyses performed earlier, all 3 ap-
proaches, after sensitivity analysis, suggested a harmful effect
of maternal smoking on infant mortality for (i) those at high
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risk of low birth weight, (ii) those who in fact were low birth
weight, and (iii) those who would be low birth weight
irrespective of smoking exposure.

In some applications with an intermediate, one desires
not simply to estimate the effects of the exposure conditional
on the intermediate, but also to partition the total effect into
the proportion through the intermediate and the proportion
through other pathways. Such analyses are subject to an even
wider array of possible confounding biases26,35–37 and are
beyond the scope of the present paper. Nevertheless, re-
searchers have begun to develop methodology to allow for
these analyses using so-called natural direct and indirect
effects; sensitivity analysis can be used to address some of the
biases that arise in these settings.3,38,39 For an example of
such an analysis in perinatal epidemiology, see the study of
Ananth and VanderWeele40 that examines the extent to which
the effect of placental abruption on perinatal mortality out-
comes is mediated through premature birth.

When one does condition on an intermediate (or vari-
ants thereof under the approaches described earlier), it is
important to be clear about what the scientific or policy
question is. The approaches we have described may be of
service when one is interested in assessing the presence of a
direct effect, or when one is interested in the effect of an
exposure among particularly vulnerable subpopulations.
However, in many cases the total effect of the exposure is of
policy interest and conditioning on an intermediate is not
necessary.8,10 Moreover, in some settings, effects conditional
on birth weight or gestational age may be of interest but may
not necessitate the analytic approaches described here. This
will be the case if the exposure or intervention under study in
fact occurs after birth (eg, a neonatal intervention).6 In these
cases, birth weight or gestational age becomes a pre-exposure
baseline variable, and the approaches we have described here
will not be needed. For a neonatal intervention, one could
simply condition on birth weight or gestational age without
concern about the biases that arise when conditioning on an
intermediate. Such analyses simply reduce to ordinary assess-
ment of effect modification in epidemiology. Birth weight
may serve as a confounder for a neonatal intervention in
addition to potentially being an effect modifier. These set-
tings should be distinguished from those similar to the birth-
weight paradox in which the variable that one is conditioning
on may lie on a pathway from the exposure to the outcome,
or is a descendant of variables on the causal pathway.

The approaches we have described in this paper are
applicable to perinatal epidemiology more generally. One
might, for example, condition on maternal weight gain in
assessing the effect of a maternal nutrition supplement on
infant mortality. Other examples in the literature include
conditioning on preterm birth in assessing the effect of
preeclampsia on cerebral palsy41 or conditioning on infant
weight in assessing the effect of a maternal calcium supple-

ment during pregnancy on childhood blood pressure.42 The
approaches we have described here are applicable to these
and numerous other settings. As the existing literature has
made clear, conditioning on an intermediate in perinatal
epidemiology can be problematic and can give rise to severe
biases. In many contexts, conditioning on an intermediate is
not necessary and is best avoided. Nevertheless, there are
cases in which such conditional effects are of scientific or
policy interest. We have shown that several alternative ap-
proaches can be used to draw inferences in such settings.
These methodologic tools are imperfect, make assumptions,
and need to be interpreted carefully but they can nonetheless
be useful in reasoning about direct and conditional effects.
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